

WARNING – stupid visual metaphor approaching at sub-warp speed!
Many content development teams find themselves trying to navigate between two very
popular frameworks:
1. OASIS DITA: The industry standard for topic-based, structured (XML) documentation.
2. Docs-as-code: The DevOPS-driven framework for authoring and publishing content
using the same tools and processes as software engineers.

Within the gravitational sphere of influence for each of these frameworks, we see satellite
technologies. Docs-as-code relies on static site generators. DITA relies on the DITA Open
Toolkit. To understand how one of these frameworks operates, you’ll eventually need to
learn about satellite technologies. If you chase a satellite, you’ll be pulled into into its
parent's gravity.

New content development teams need to set a course around or between these
frameworks. Established teams in one framework may be asked to “play nicely” with
another team, partner, or subsidiary committed to the other framework. If you are doing
extensive work in software, needing to consider an alternative frameworks is mater of when
and not if.

If your organization develops software or solutions for developers, the prevailing framework
for content development is DevOPS docs-as-code. The center of gravity for DevOPS is tool
and process integration. If engineering tools and processes are good enough to produce
software deliverables, they should be adequate for technical writers to deliver content in
support of that software.

If your organization works in a regulated industry, develops consumer products, or requires
an ultra-smart content architecture, DITA and structured markup should be close to your
flight path. The center of gravity here is writer efficiency and intelligent content.

If your organization has a mix of existing DITA and existing docs-as-code implementations,
you be navigating between two strong gravitational pulls. You're in for a bumpy journey – or
what Mark Twain said of Pilgrim's Progress – "interestin' but tough". If you can style the
HTML generated from DITA and docs-as-code to look the same of your doc portal, these
parallel solutions can co-exist for a long time. If you need to converge your authoring and
processing infrastructure, then you need to make very clear to your stakeholders what they
are obtaining and losing by choosing on framework over the other. The onus is on you, the
publication specialist, to lay out the costs, benefits, and use cases for each option. You
need to do some homework, sometimes on very short notice.

And – if you are currently doing a COURSE-B in DITA and do not believe that you'll ever
have to deal with DevOPS docs-as-code, consider that business initiatives outside your
control such as reorgs, mergers, acquisitions, or partnerships may force the conversation.
Consider asking one of your talented junior writers to become your team expert of docs-as-
code. A little insurance never hurts.

If you need to move some or all of your DITA content into Markdown, the DITA-OT provides
robust support. NOT EVERY feature that you can do in DITA will have a Markdown
equivalent, but the basic stuff moves over eaily.

Oxygen Editor does a brilliant job converting basic Markdown documents into DITA topics.

When you open a Markdown document in Oxygen, it displays both the raw Markdown
markup and the equivalent DITA markup that it has silently converted. This is also a great
environment to debug Markdown markup that is not behaving correctly when converted to
DITA.

Publishing. I recommend experimenting with Markdown-only static site generators such as
Jekyll or Hugo. The screen shot here from Docusaurus 2.0 illustrates that the out-of-the-box
HTML5 generated from static site generators is quite serviceable. Expect to have an "is this
is good enough?" conversation with people in your organization who want to move away
from XML and its "separate content fro formatting" axioms. If you have experience using a
static site generator to build demo web sites, you will be in a better position to manage the
conversations.

The DITA-OT and XML IDEs such as Oxygen Editor can publish content that is authored in
XML, Markdown, or a mix of the two. Your standard DITA 1.3 map has been capable of
referencing Markdown documents for many years now. In addition, DITA maps can
augment the information in a basic Markdown document with <topicref> metadata. You can
keep these Markdown documents pretty dumb if you can compensate with wicked smart
maps.

The yet-to-be-released Lightweight DITA standard introduces specialized DTDs that allow
your Makdown documents (MDITA) to inherit key values and to transclude content living in
XML libraries. Worth checking out.

In plotting your course between the DITA framework and the docs-as-code framework, will
you be able to develop content in XML and have it processed without modification in a
static site generator? No. Static site generators currently do not have an integrated XML
parser, so they cannot make much sense of DITA topics.

As you've seen in the previous section, you can single-source basic Markdown topics so
they can be published without modification through a static site generator or the DITA-OT.
In some sense, that's makes DITA the more attractive framework for collaboration in the
short run.

Generic Markdown was never designed to support the sorts of sophisticated things that we
do as technical writers – global reuse, keyword reuse, filtering, conditions, topic-based
authoring, metadata inheritance, and so on. So – if I am working in docs-as-code
framework and I need or want to do these sophisticated things, I need to reach outside
generic Markdown to add instructions from what is called a templating language such as
Liquid or Django. Once I introduce these instructions, compatibility with th DITA-OT pipeline
erodes quickly. These optimizations make what you can do in Markdown significantly make
powerful – at the cost of interoperability. You cannot even single-source a Markdown file
optimized with Liquid with one optimized by Django. It gets to be a bumpy road quickly.

Many of the things we would put in our DITA <prolog>s, appear in YAML headers in
optimized Markdown. This public sample from Microsoft is certainly readable, but not
portable.

The Liquid templating language is a sophisticated collection of document modeling and
document processing resources. When a static stite generator reads a Markdown
document with any of these Liquid instructions, it first processes the Liquid command and
then performs formatting. Note that Liquid instructions are derived from software
programming standards.

Occasionally you'll see Markdown and templating markup that reflect an XML DITA
ancestry. I recommend looking at MarkedIt.

Would it possible to have a repo full of optimized Markdown documents that you filtered for
Jekyll on Mondays and then filtered for DITA-OT on Tuesdays? Theoretically – yes,
Practically – no.

