Google

2022 DITA/Markdown Interoperability

Stanley Doherty, Ph.D.
OASIS DITA Technical Committee
Google Cloud Platform

Boston DITA Users Group
August 10, 2022

Agenda

Context Why are we talking about Markdown in a DITA user
group?

How do we convert Markdown to DITA?
How do we convert DITA to Markdown?

Publishing How can we publish HTML that references both DITA
and Markdown sources?

Single sourcing Is it possible to single-source Markdown content so
that it can be published in both DITA and Docs-as-
Code environments?

Context

DITA
Structured

DevOPS

Google

WARNING - stupid visual metaphor approaching at sub-warp speed!

Many content development teams find themselves trying to navigate between two very
popular frameworks:

1. OASIS DITA: The industry standard for topic-based, structured (XML) documentation.
2. Docs-as-code: The DevOPS-driven framework for authoring and publishing content
using the same tools and processes as software engineers.

Context

DevOPS

Static
SiteG

MD

GitHub

Google Confidential +Pr

Within the gravitational sphere of influence for each of these frameworks, we see satellite
technologies. Docs-as-code relies on static site generators. DITA relies on the DITA Open
Toolkit. To understand how one of these frameworks operates, you'll eventually need to

learn about satellite technologies. If you chase a satellite, you'll be pulled into into its
parent's gravity.

Context

DevOPS -
~A Docsas Code ’

Static

SiteG et

GitHub

COURSE-A COURSE-C COURSE-B

Google

New content development teams need to set a course around or between these
frameworks. Established teams in one framework may be asked to “play nicely” with
another team, partner, or subsidiary committed to the other framework. If you are doing
extensive work in software, needing to consider an alternative frameworks is mater of when

and not if.

Context

Structured ‘
Doc

Static
SiteG -OT
GitHub

+ SMEs and writers use same tools

+ SMEs and writers use same workflow
+ Software can't ship without docs

+ Customers can contribute to content T
+ Content can be published instantly

+ Thousands of engineers can update

tooling () \

COURSE-A COURSE-C COURSE-B

Google Confidential + Propritary

If your organization develops software or solutions for developers, the prevailing framework
for content development is DevOPS docs-as-code. The center of gravity for DevOPS is tool
and process integration. If engineering tools and processes are good enough to produce
software deliverables, they should be adequate for technical writers to deliver content in
support of that software.

Context

Structured ')

Static
SiteG
GitHub

MD

+ Teams work within an industry standa
+ Writers tag content with semantic markup
+ Wiriters write in topics

+ Writers have robust content reusetoo]s
+ Content can be validated as you write,

+ Inheritance ‘
+ Oxygen Editor

COURSE-A COURSE-C COURSE-B
Google Confidentil + Proprictary

If your organization works in a regulated industry, develops consumer products, or requires
an ultra-smart content architecture, DITA and structured markup should be close to your
flight path. The center of gravity here is writer efficiency and intelligent content.

Context

DevOPS -
Docsas Code ’

Static
SiteG et
GitHub
+ SMEs and writers use same tools + Teams work within an industry standard
+ SMEs and writers use same workflow + Writers tag content with semantic markup
+ Software can't ship without docs + Wiriters write in topics
+ Customers can contribute to content T + Writers have robust content reusetools
+ Content can be published instantly + Content can be validated as you write,
+ Thousands of engineers can update + Inheritance :
d + Oxygen Editor

tooling “)

COURSE-A COURSE-C
Google Pockidential + Proguietary

If your organization has a mix of existing DITA and existing docs-as-code implementations,
you be navigating between two strong gravitational pulls. You're in for a bumpy journey — or
what Mark Twain said of Pilgrim's Progress — "interestin' but tough". If you can style the
HTML generated from DITA and docs-as-code to look the same of your doc portal, these
parallel solutions can co-exist for a long time. If you need to converge your authoring and
processing infrastructure, then you need to make very clear to your stakeholders what they
are obtaining and losing by choosing on framework over the other. The onus is on you, the
publication specialist, to lay out the costs, benefits, and use cases for each option. You
need to do some homework, sometimes on very short notice.

Context

DITA _
A Stuctured 1))
Doc_—~

DevOPS N\
~A Docsas Code ’)

Static DITA
XML
SiteG MD OT
GitHub CCMS
"‘ = ¢ =
o) &
REORGS ACQUISITIONS
&
MERGERS PARTNERSHIPS
COURSE-A COURSE-C COURSE-B

Google

And — if you are currently doing a COURSE-B in DITA and do not believe that you'll ever
have to deal with DevOPS docs-as-code, consider that business initiatives outside your
control such as reorgs, mergers, acquisitions, or partnerships may force the conversation.

Consider asking one of your talented junior writers to become your team expert of docs-as-
code. A little insurance never hurts.

From DITAto Markdown
DITA Open Toolkit See in DITA-OT docs.

You can convert a single topic or an entire map.

dita --input=my-topic.dita --format=markdown -output=output_markdown
dita --input=my-map.ditamap --format=markdown -output=ocutput_markdown
You can choose flavors of Markdown.

- format=markdown(generic markdown conventions)

- format=markdown github (GFM)

- format=markdown_gitbook (GFM+ summary.mda TOC file)

Google el - Proprietan

If you need to move some or all of your DITA content into Markdown, the DITA-OT provides
robust support. NOT EVERY feature that you can do in DITA will have a Markdown
equivalent, but the basic stuff moves over eaily.

From Markdown to DITA

Oxygen Editor See in Oxygen docs.
In Oxygen, you can convert a single Markdown file or batch-convert many.
[) - Remote Control Components 1
Maximum Number of Net Open
3 - Programming Light Bubs © Edit Properties...

\

&) - Tunng OnfOfforDmm £yt Create Topics
e ‘Pro:xt S‘:acﬁc:b:‘ Append child >}
;: LE::dlt :‘b SOS::_ Insert Before >
\ Insert After >
Supplemental test topics
=) - Bementdevel tests Duplicate
3 - XDITA elements Refactoring 2 Convert Markdown to DITA topic...

Tools Document Window Help
2% XML Refactoring...
[Generate Sample XML Files...
@) Generate/Convert Schema... AlteShift+C
Convert DB Structure to XML Schema...
Flatten Schema...

Generate Java classes from XML Schema (XSD)...

Compile XSL stylesheet for Saxon...

JSON Tools >
Batch Documents Converter > HTML to XHTML...

E Format and Indent Files... HTML to DITA...
Generate Documentation > HTML to DocBook 4...

Canonicalize... HTML to DocBook 5...
Sign... Markdown to XHTML...

Verify Signature... Markdown to DITA...

Google

Oxygen Editor does a brilliant job converting basic Markdown documents into DITA topics.

From Markdown to DITA

Oxygen Editor See in Oxygen docs.
You can preview the conversionin the Editor.
© remote-components.md X 4rm
gy m— ~
2 10 yemote-components o> [i>Remote Control
s k-
.
5 4 Remote Control Cosponents Components (i
e
7 The remote control of your has co
s D:ta id te-components
9 (../images/rer
" ‘
:; N @The remote control of your P # [product-name)
14 Remote Lighting Network 4 has components that allow you to
:, program and operate the light bulbs on your lighting network
17
18 € @
19
| Reset button
o reset the zemote contol, you musc | |046) Front and back of remote control tte]
23
b v
< >
< > 2 DITA XDITA HTML

Confidential + Proprietary

Google

When you open a Markdown document in Oxygen, it displays both the raw Markdown
markup and the equivalent DITA markup that it has silently converted. This is also a great
environment to debug Markdown markup that is not behaving correctly when converted to
DITA.

Publishing

Markdown only

Static Site Generators See , , 4 ,and 3
Sample: React Native - https://reactnative.dev/docs/getting-started.

0 ReactNative 069+ Components APl Architecture Contributing Blog () 9-

Introduction

Welcome to the very start of your React Native journey! If you're
looking for environment setup instructions, they've moved to their

oown section. Continue reading for an introduction to the

documentation, Native Components, React, and more!

Many different kinds of people use React Native: from advanced iOS developers to React beginners,

to people getting started programming for the first time in their career. These docs were written for

Environment setup

all learners, no matter their experience level or background.

How to use these docs

JavaScript Runtime
You can start here and read through these docs linearly like a book; or you can read the specific

Native Modules
sections you need. Already familiar with React? You can skip that section—or read it for a light

Native Components > refresher.
The New Architecture
Android and iOS guides P isit
To work with React Native, you will need to have an understanding of JavaScript fundamentals. If
Google you're new to JavaScript or need a refresher, you can dive in or brush up at Mozilla Developer

Network.

Publishing. | recommend experimenting with Markdown-only static site generators such as
Jekyll or Hugo. The screen shot here from Docusaurus 2.0 illustrates that the out-of-the-box
HTML5 generated from static site generators is quite serviceable. Expect to have an "is this
is good enough?" conversation with people in your organization who want to move away
from XML and its "separate content fro formatting" axioms. If you have experience using a
static site generator to build demo web sites, you will be in a better position to manage the
conversations.

Publishing
DITA maps + DITA topics + (wicked simple) Markdown files
DITAmaps See
map topicref
1 ?xml version="1.0" encoding="UTF-8
2 <!DOCTYPE map PUBLIC "-//OASIS//DTD DITA Map//EN" "map.dtd">
3 v <map "rlnmap"
4 topicmeta
5 navtitle>Remote Lighting Network</navtitle
6 topicmeta
7
8 topicref
9 |<topicref |
1 topicref
M topicref
12v topicmeta
13v metadata
14 audience "administrator"
15+ prodinfo
16 prodname>Console</prodname
17 prodinfo
18 metadata
19 topicmeta
‘ topicref
Google Gonfidential + Proprietary

The DITA-OT and XML IDEs such as Oxygen Editor can publish content that is authored in
XML, Markdown, or a mix of the two. Your standard DITA 1.3 map has been capable of
referencing Markdown documents for many years now. In addition, DITA maps can
augment the information in a basic Markdown document with <topicref> metadata. You can
keep these Markdown documents pretty dumb if you can compensate with wicked smart
maps.

Publishing

DITA maps + Lightweight DITA topics + robust MDITA (Markdown) files
See (GitHub repo).

xml version="1.0" er

I<!DOCTYPE map PUBLIC "-//OASIS//DTD LIGHTWEIGHT DITA Map//EN" "lw~map.dtd">l

="UTF-8"2>

v <map "rlnmap">

<navtitle>Remote Lighting Network</navtitle>
</topicmeta>

[< keydef "product-name" I

map
1
2
3
4v <topicmeta>
5
6
7
8
9

<topicmeta>
<linktext>Remote Lighting Network</linktext>

" </topicmeta>
12 </keydef>
13 <topicref
14 <topicref
15
16 <topicref
17 <topicref />
18 <topicref
19v <topicref
<topicref
21 <topicref
22 </topicref>
Google Gonfidential + Proprietary

The yet-to-be-released Lightweight DITA standard introduces specialized DTDs that allow
your Makdown documents (MDITA) to inherit key values and to transclude content living in
XML libraries. Worth checking out.

Single sourcing

XML DITA resources for static site generators— no XML parser

Google

In plotting your course between the DITA framework and the docs-as-code framework, will
you be able to develop content in XML and have it processed without modification in a
static site generator? No. Static site generators currently do not have an integrated XML
parser, so they cannot make much sense of DITA topics.

Single sourcing

Simple Markdownfiles between static site generators and DITA map publishing

EASY
PEASY

Google efidential +Proprieta

As you've seen in the previous section, you can single-source basic Markdown topics so
they can be published without modification through a static site generator or the DITA-OT.

In some sense, that's makes DITA the more attractive framework for collaboration in the
short run.

Single sourcing

"Optimized" Markdown files between static site generators and DITA map publishing

Bumps, potholes, and broken pavement

Google Confidential + Proprietary

Generic Markdown was never designed to support the sorts of sophisticated things that we
do as technical writers — global reuse, keyword reuse, filtering, conditions, topic-based
authoring, metadata inheritance, and so on. So — if | am working in docs-as-code
framework and | need or want to do these sophisticated things, | need to reach outside
generic Markdown to add instructions from what is called a templating language such as
Liquid or Django. Once | introduce these instructions, compatibility with th DITA-OT pipeline
erodes quickly. These optimizations make what you can do in Markdown significantly make
powerful — at the cost of interoperability. You cannot even single-source a Markdown file
optimized with Liquid with one optimized by Django. It gets to be a bumpy road quickly.

Single sourcing

Docs-as-Codeteams supplement basic Markdown code with metadata from YAML and
processinginstructions from an HTML template languages suchas , ,or

YAML headers -
title: wWhat is Azure NetApp Files | Microsoft Docs
description: Learn about Azure NetApp Files, an enterprise-
class, high-performance, metered file storage service that
supports any workload type and is highly available.
services: azure-netapp-files
documentationcenter: ''
author: b-hchen
manager: ''
editor: ''

ms.assetid:

ms.service: azure-netapp-files
ms.workload: storage
ms.tgt_pltfrm: na

ms.topic: overview

ms.date: 10/04/2021

ms.author: anfdocs

Google

Many of the things we would put in our DITA <prolog>s, appear in YAML headers in
optimized Markdown. This public sample from Microsoft is certainly readable, but not
portable.

Single sourcing

Docs-as-Codeteams supplement basic Markdown code with processing
instructionsfrom an HTML templatelanguage such as ! ,or

Liquid instructions {% if product.title == "Awesome Shoes" %}
These shoes are awesome!
{% endif %}

{% assign foo = "bar" %}
{{ foo }}

{% capture snippet_content $%}
{% render 'your-snippet-name' %}
{% endcapture %}
{% if snippet_content contains "Could not find asset" %}
{% comment %} do nothing {% endcomment %}
{% else %}
{% render 'your-snippet-name' %}
{% endif %}

Google el - Proprietan

The Liquid templating language is a sophisticated collection of document modeling and
document processing resources. When a static stite generator reads a Markdown
document with any of these Liquid instructions, it first processes the Liquid command and
then performs formatting. Note that Liquid instructions are derived from software
programming standards.

Single sourcing

Docs-as-Codeteams supplement basic Markdown code with processing
instructionsfrom an HTML templatelanguage such as ! ,or

1BM
Extensions

:step: data-tutorial-type='step'}
:shortdesc: .shortdesc}
:new_window: target="_blank"}
:codeblock: .codeblock}

:screen: .screen}

:tip: .tip}

ipre: .pre}

Apply end to end security to a cloud application
{: #cloud-e2e-security}

{: toc-content-type="tutorial”}

{: toc-services="containers, cloud-object-storage,
activity-tracker, Registry, secrets-manager, appid,
Cloudant, key-protect, log-analysis"}

{: toc-completion-time="2h"}

Google

Occasionally you'll see Markdown and templating markup that reflect an XML DITA
ancestry. | recommend looking at Marked|t.

Single sourcing

Theoretically —you coul/d write optimized Markdown for static site generatorsand
then dumb it all down for DITA-OT.

Google Confidential + Proprietary

Would it possible to have a repo full of optimized Markdown documents that you filtered for
Jekyll on Mondays and then filtered for DITA-OT on Tuesdays? Theoretically — yes,
Practically — no.

Questions?

Goog|g Confidential + Proprietary

